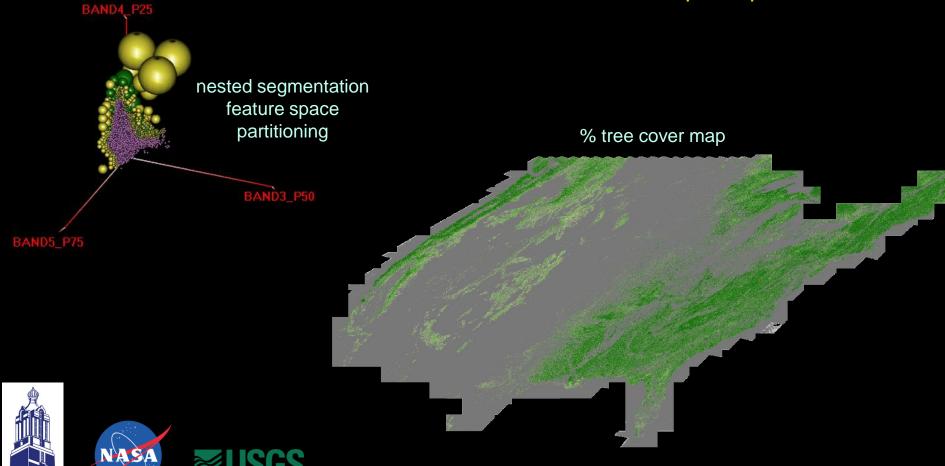
The use of nested segmentation active-learning for large area Landsat classification

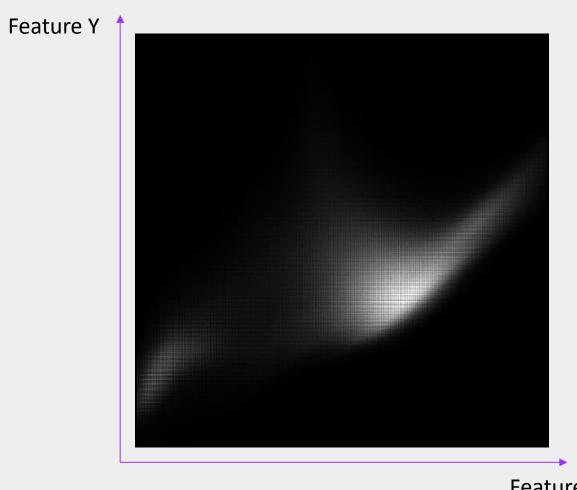
Alexey Egorov, David Roy & Matt Hansen SDSU GSCE & University Maryland



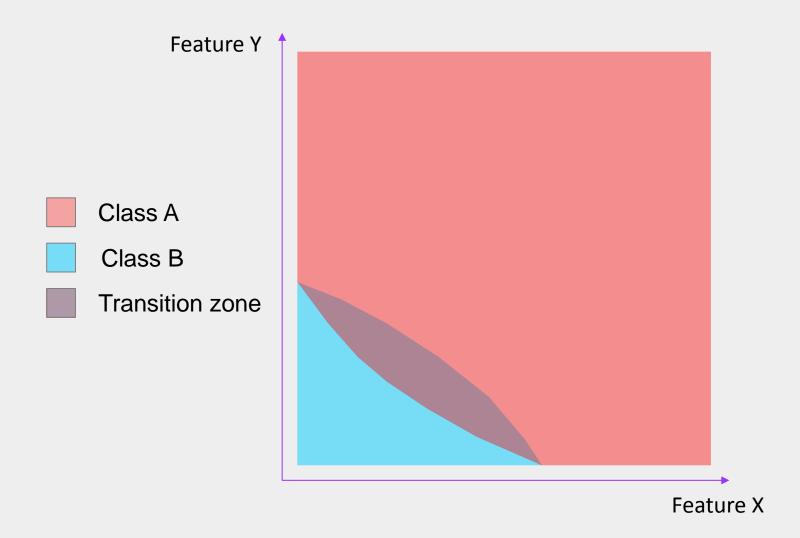
Training data collection

Targeted sample vs Random sample

Feature space cartoon

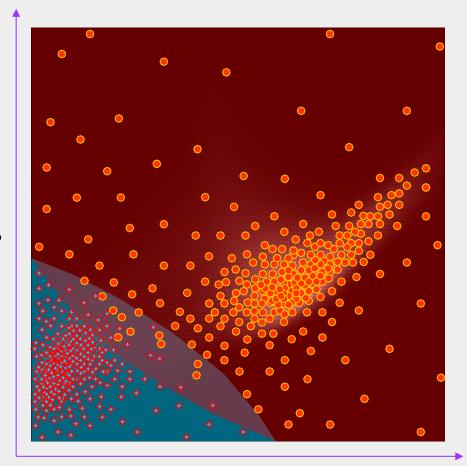


Two hypothetical classes distribution in feature space



Training data random sample

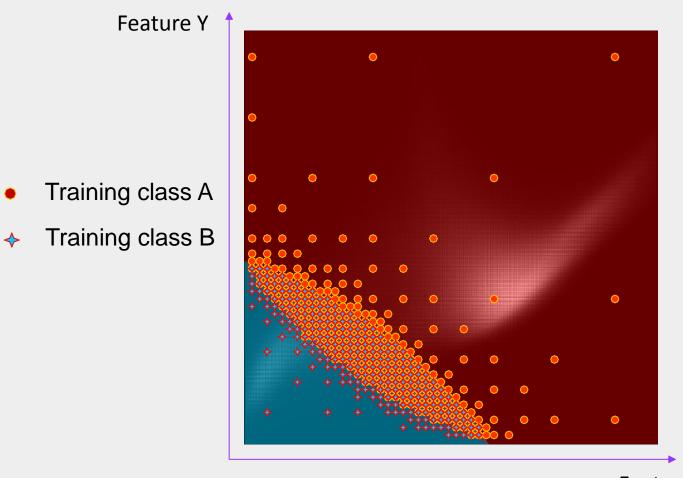
- Training class A
- Training class B



Feature X

Random sample proportional to class A and B distribution in feature space

Training data targeted sample



Feature X

Targeted sample to more precisely separate class A and B

Active learning

&

Nested Segmentation feature space partitioning

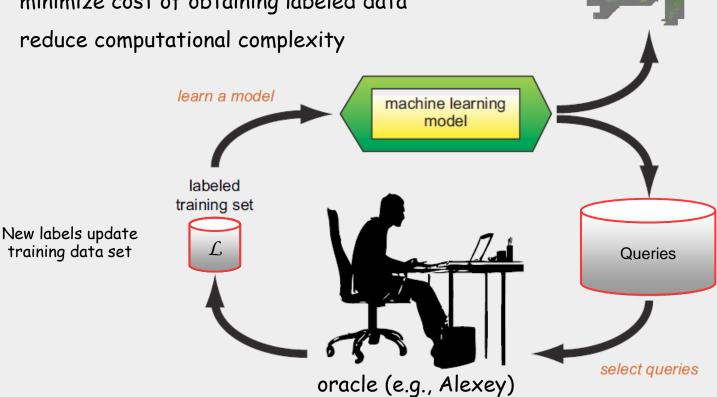
Egorov, Hansen, Roy, Kommareddy, Potapov, 2015, Image interpretation-guided supervised classification using nested segmentation, *Remote Sensing of Environment*, 165, 135–147.

Active learning concepts

Overcome class labeling bottlenecks by asking queries in the form of unlabeled instances to be labeled by an oracle (e.g., a human annotator)

Goals:

- achieve high classification accuracy using as few labeled instances as possible
- minimize cost of obtaining labeled data

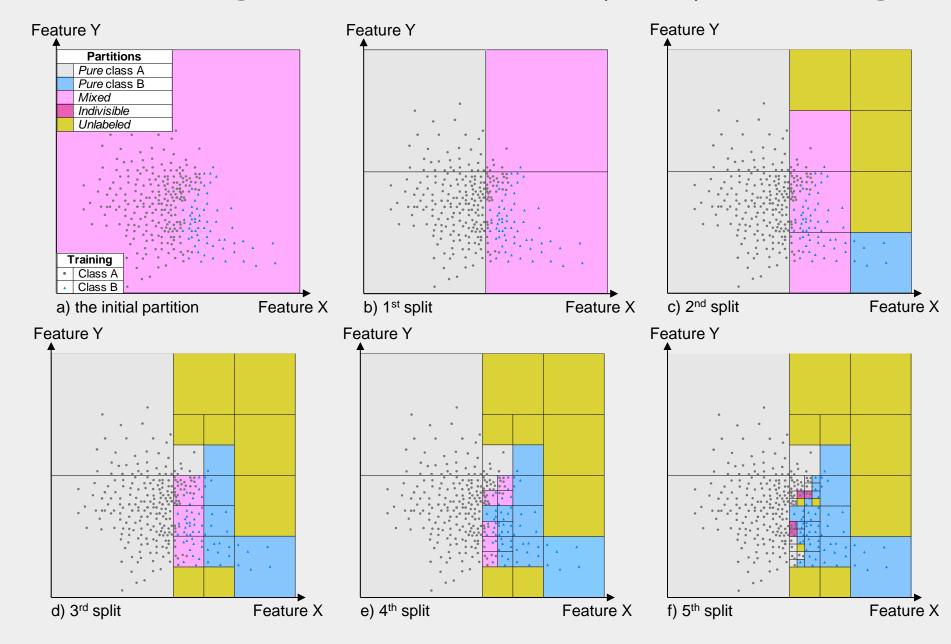


Queries, are the most informative unlabeled instances generated by classifier

Each iteration refines model and

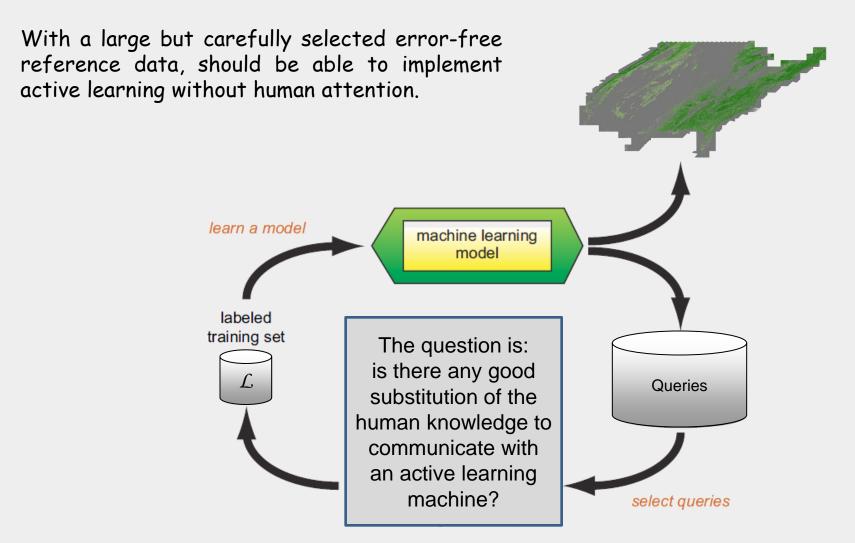
improves the classification accuracy

Nested Segmentation feature space partitioning



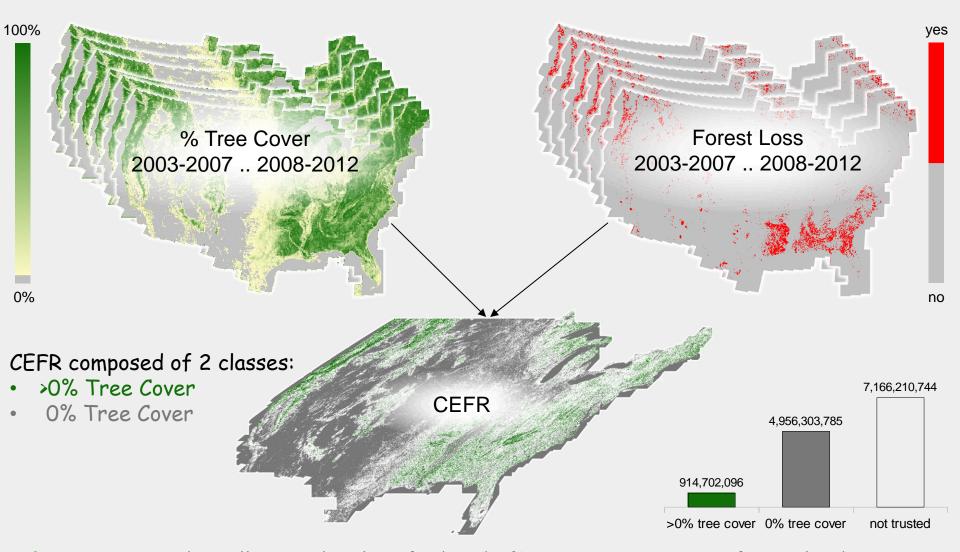
Active learning - replace the human

A human annotator is not the only source of training labels.



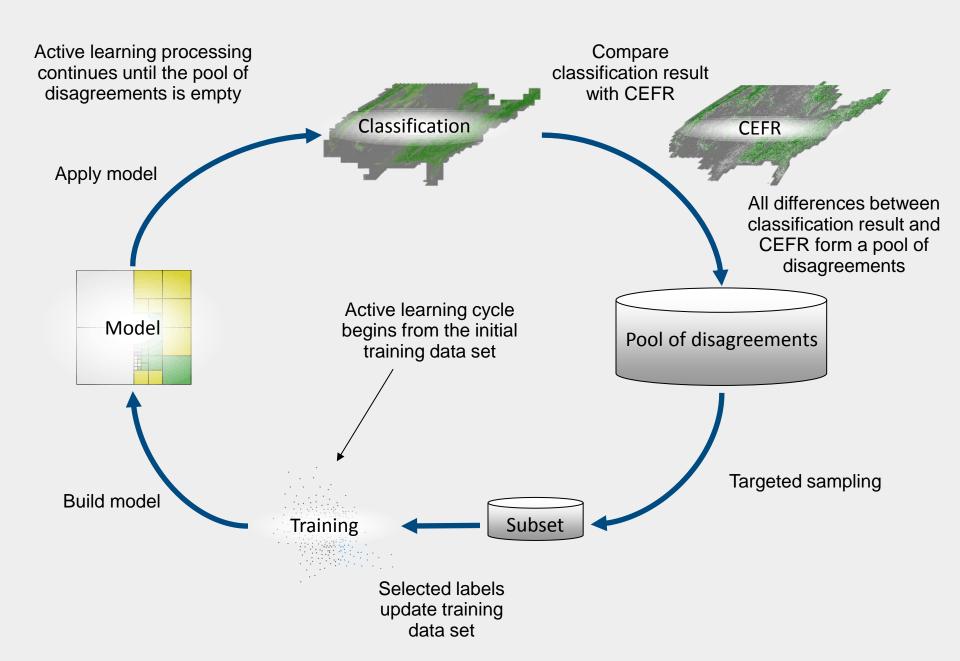
2-class commission error-free reference (CEFR) generation

Use 5-year WELD generated 30m % tree cover and binary forest loss products for six epochs (2003-2007, 2004-2009, ..., 2008-2012) (Hansen et al., 2011, 2014)



>0% Tree Cover when all 6 epochs classified as (>0% Tree Cover AND no forest loss)
0% Tree Cover when all 6 epochs classified as (0% Tree Cover AND no forest loss)

Active learning cycle



Targeted sampling

Initialized with a few >0% Tree Cover and 0% Tree Cover pixels from CEFR (composed of 915 million >0% Tree Cover and 4,956 million 0% Tree Cover pixels).

After 120 cycles the active learning machine collected:

3,127,427 0% Tree Cover training pixels 0.1% sampling rate 3,455,020 >0% Tree Cover training pixels

Building a classification model

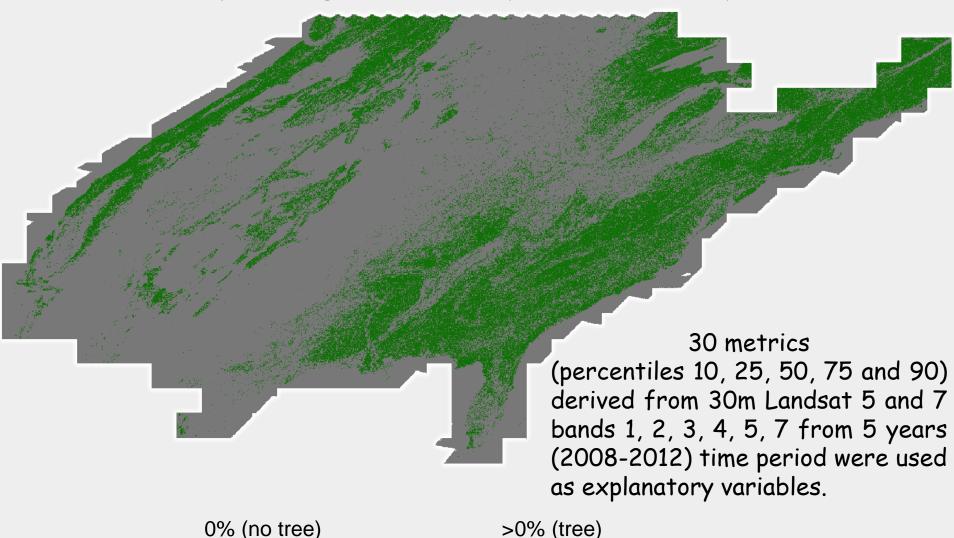
3,455,020 >0% Tree Cover and 3,127,427 0% Tree Cover pixels provide a parsimonious Nested Segmentation feature space partitioning.

Partitions are shown as spheres for better 3D visualization, though in fact all partitions are boxes (cubes in 3D). 0% Tree Cover partitions are omitted in 3D.

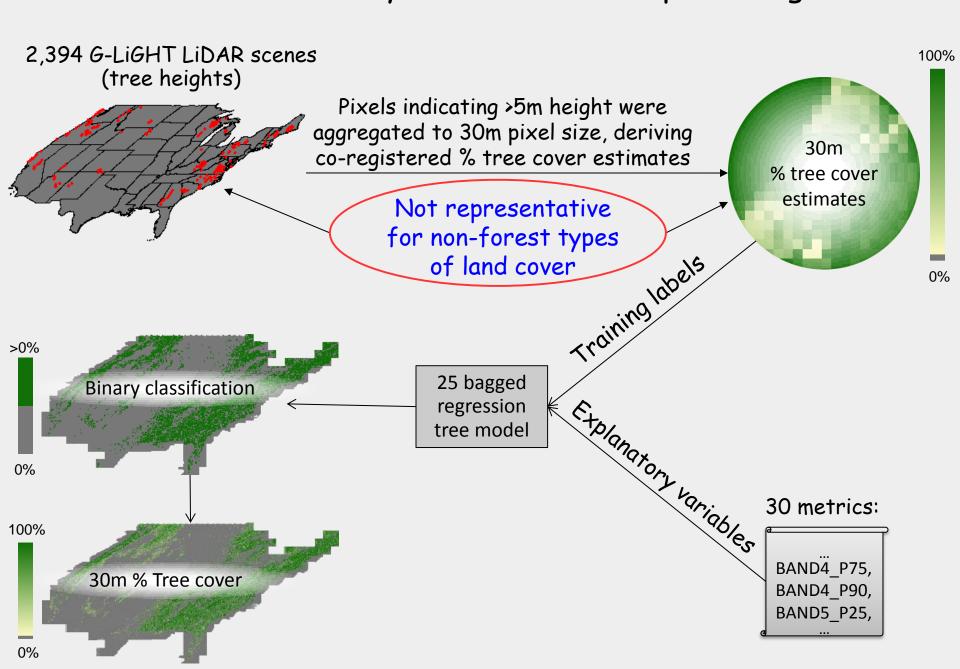
30 metrics (percentiles 10, 25, 50, 75 and 90) derived from 30m Landsat 5 and 7 bands 1, 2, 3, 4, 5, 7 for 5 years (2008–2012) were used as explanatory variables.

Binary (2-class) classification

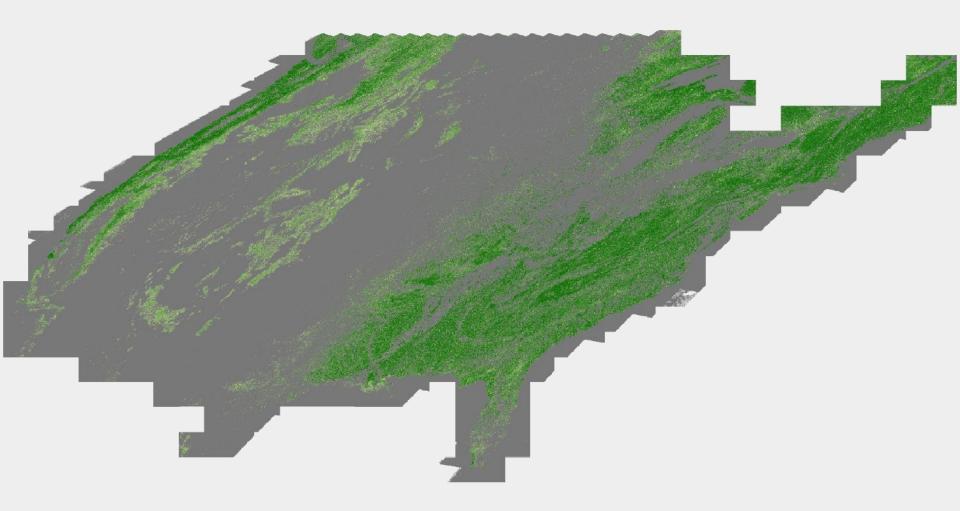
With the 3,455,020 <0% Tree Cover and 3,127,427 0% Tree Cover training pixels provide a parsimonious Nested Segmentation feature space partitioning and applied to all 30m CONUS pixels to generate a binary (tree/no tree) map



Conterminous US 30m 5-year % tree cover product generation

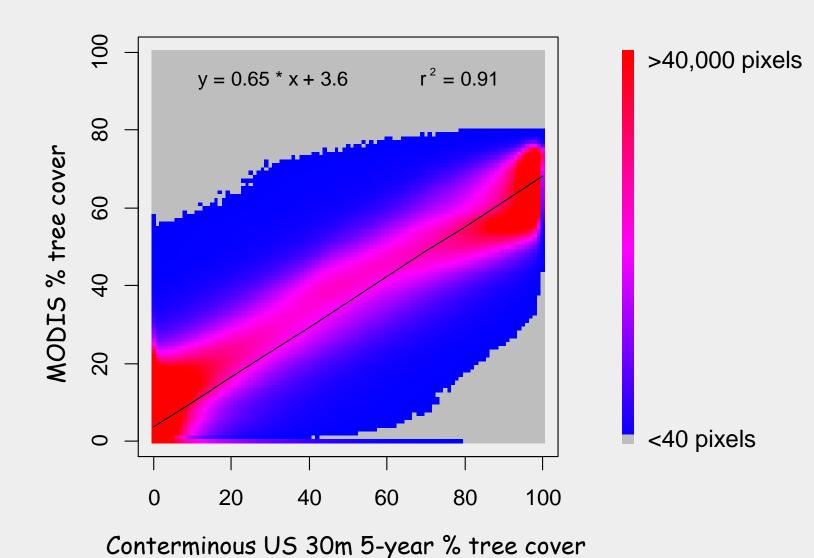


Conterminous US 30m 5-year (2008-2012) % tree cover final product



0% 100%

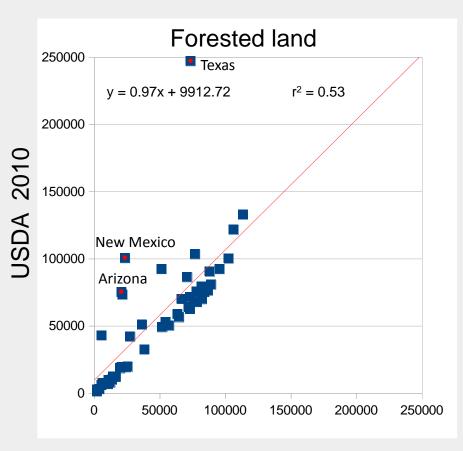
Conterminous US 30m 5-year % tree cover vs
median MODIS 2008-2012 250m % tree cover (MOD44B)



State by state comparison with USDA census 2010, km²

http://apps.fs.fed.us/fiadb-downloads/FIADB6_pop_estimates.html

Census: Nevada - 2012, New Mexico – 2013, Washington – 2011, Wyoming – 2012, all other states – 2010.



Timber land 120000 y = 0.87x - 761.70 $r^2 = 0.96$ 100000 **JSDA** 2010 80000 60000 40000 20000 20000 40000 60000 80000 100000 120000

Conterminous US 30m 5-year % tree cover

Conterminous US 30m 5-year % tree cover

• States Texas, New Mexico and Arizona include Juniper bush lower than 5 m in forest land

Summary

We present a new classification approach, based on:

- Active learning technique, adapted to remote sensing data processing
- New feature space partitioning algorithm
- Targeted sampling as substitution of random sampling

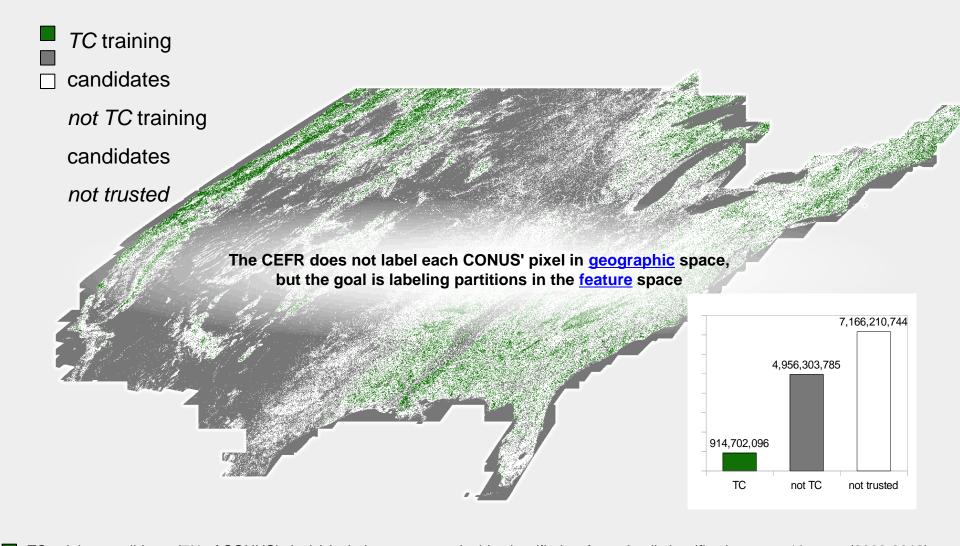
Advantages of the approach:

- Compact and representative training (including rare variations)
- · Computationally efficient, applicable to continental and global scale projects
- Minimize cost of obtaining labeled data

References

- Egorov A.V., Hansen, M.C., Roy, D.P., Kommareddy, A., Potapov, P.V., 2015, Image interpretation-guided supervised classification using nested segmentation, *Remote Sensing of Environment*, 165, 135–147
- Hansen, M.C., Egorov, A, Roy, D.P., Potapov, P., Ju, J., Turubanova, S., Kommareddy, I., Loveland, T., 2011, Continuous fields of land cover for the conterminous United States using Landsat data: First results from the Web-Enabled Landsat Data (WELD) project. *Remote Sensing Letters*, 2, 4:279-288.
- Hansen, M.C., Egorov, A., Potapov, P.V., Stehman, S.V., Tyukavina, A., Turubanova, S.A., Roy, D.P., Goetz, S.J., Loveland, T.R., Ju, J.,
 Kommareddy, A., Kovalskyy, V., Forsythe, C., Bents, T., 2014, Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD), Remote sensing of Environment, 140, 466-484

2-class commission error-free reference (CEFR) data generation



- TC training candidates (7% of CONUS' pixels) include areas, sustainable classified as forest in all classifications over 10 years (2003-2012).
- Not TC training candidates (38% of CONUS' pixels) were never classified as forest over 10 years.

Filling gaps in CEFR

